578 research outputs found

    Efficiently Combining Human Demonstrations and Interventions for Safe Training of Autonomous Systems in Real-Time

    Full text link
    This paper investigates how to utilize different forms of human interaction to safely train autonomous systems in real-time by learning from both human demonstrations and interventions. We implement two components of the Cycle-of-Learning for Autonomous Systems, which is our framework for combining multiple modalities of human interaction. The current effort employs human demonstrations to teach a desired behavior via imitation learning, then leverages intervention data to correct for undesired behaviors produced by the imitation learner to teach novel tasks to an autonomous agent safely, after only minutes of training. We demonstrate this method in an autonomous perching task using a quadrotor with continuous roll, pitch, yaw, and throttle commands and imagery captured from a downward-facing camera in a high-fidelity simulated environment. Our method improves task completion performance for the same amount of human interaction when compared to learning from demonstrations alone, while also requiring on average 32% less data to achieve that performance. This provides evidence that combining multiple modes of human interaction can increase both the training speed and overall performance of policies for autonomous systems.Comment: 9 pages, 6 figure

    Spectral classification of short numerical exon and intron sequences

    Get PDF
    This research presents three new numerical representations for classifying short exon and intron sequences using discrete Fourier transform period-3 value. Based on the human genome, results indicate that the Complex Twin-Pair representation is attractive compared with other numerical representations and the approach has potential applications in genome annotation and read mapping

    Impact of germline and somatic missense variations on drug binding sites.

    Get PDF
    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein\u27s gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.The Pharmacogenomics Journal advance online publication, 26 January 2016; doi:10.1038/tpj.2015.97

    Developing and applying heterogeneous phylogenetic models with XRate

    Get PDF
    Modeling sequence evolution on phylogenetic trees is a useful technique in computational biology. Especially powerful are models which take account of the heterogeneous nature of sequence evolution according to the "grammar" of the encoded gene features. However, beyond a modest level of model complexity, manual coding of models becomes prohibitively labor-intensive. We demonstrate, via a set of case studies, the new built-in model-prototyping capabilities of XRate (macros and Scheme extensions). These features allow rapid implementation of phylogenetic models which would have previously been far more labor-intensive. XRate's new capabilities for lineage-specific models, ancestral sequence reconstruction, and improved annotation output are also discussed. XRate's flexible model-specification capabilities and computational efficiency make it well-suited to developing and prototyping phylogenetic grammar models. XRate is available as part of the DART software package: http://biowiki.org/DART .Comment: 34 pages, 3 figures, glossary of XRate model terminolog

    xQTL workbench: a scalable web environment for multi-level QTL analysis

    Get PDF
    Summary: xQTL workbench is a scalable web platform for the mapping of quantitative trait loci (QTLs) at multiple levels: for example gene expression (eQTL), protein abundance (pQTL), metabolite abundance (mQTL) and phenotype (phQTL) data. Popular QTL mapping methods for model organism and human populations are accessible via the web user interface. Large calculations scale easily on to multi-core computers, clusters and Cloud. All data involved can be uploaded and queried online: markers, genotypes, microarrays, NGS, LC-MS, GC-MS, NMR, etc. When new data types come available, xQTL workbench is quickly customized using the Molgenis software generator
    corecore